OPT++

An Object-Oriented Toolkit for Nonlinear Optimization

Juan Meza

High Performance Computing Research Lawrence Berkeley National Laboratory http://crd.lbl.gov/~meza

Outline

- Introduction to Optimization
- OPT++ Philosophy
- OPT++ Problem and Solver Classes
- Quick Tour of Algorithms
- Parallel optimization techniques
- Setting up a Problem and Algorithm
 - Example 1: Unconstrained Optimization
 - Example 2: Constrained Optimization
 - Example 3: Protein Folding
- Summary

Introduction

- OPT++ is an open source toolkit for general nonlinear optimization problems
- Original development started in 1992 at Sandia National Labs/CA
- Major contributors
 - Juan Meza, LBNL
 - Ricardo Oliva, LBNL
 - Patty Hough, SNL/CA
 - Pam Williams, SNL/CA

Global OPTimization

Total = 338

Other (Country not identified) = 120

As of April, 2003

Simulation-based optimization problems

Predict properties of nanostructures or design nanostructures with desired properties

Protein folding problems: create secondary structures and obtain predictions of αhelices and β-sheets.

Parameter identification example

- Find model parameters, satisfying some bounds, for which the simulation matches the observed temperature profiles
- Computing objective function requires running thermal analysis code
- Each simulation requires approximately 7 hours on 1 processor

Formulation of parameter ID problem

$$\min_{x} \sum_{i=1}^{N} (T_i(x) - T_i^*)^2$$
s. t. $0 \le x \le u$

- Objective function consists of computing the temperature difference between simulation results and experimental data
- Optimization landscape contains many local minima
- Uncertainty in both the measurements and the model parameters

General Optimization Problem

$$\min_{x \in \mathbb{R}^n} f(x),$$

Objective function

$$s.t. \quad h(x) = 0,$$
$$g(x) \ge 0$$

Equality constraints

Inequality constraints

$$L = f(x) + y^{T}h(x) - w^{T}g(x)$$

Optimization Problem Types

- Unconstrained optimization
- Bound constrained optimization
 - Only upper and lower bounds
 - Sometimes called "box" constraints
- General nonlinearly constrained optimization
 - Equality and inequality constraints
 - Usually nonlinear
- Some special case classes (not currently handled in OPT++)
 - Linear programming (function and constraints linear)
 - Quadratic programming (quadratic function, linear constraints)

Some working assumptions

- Objective function is smooth
 - Usually true, but simulations can create noisy behavior
- Twice continuously differentiable
 - Usually true, but difficult to prove
- Constraints are linearly independent
 - Users can sometimes over-specify or incorrectly guess constraints
- Expensive objective functions

OPT++ Philosophy

- Problem should be defined in terms the user understands
 - Do I have second derivatives available? and not
 - Is my objective function twice continuously differentiable?
- Solution methods should be easily interchangeable
 - Once the problem is set up, methods should be easy to interchange so that the user can compare algorithms
- Common components of algorithms should be interchangeable
 - Algorithm developers should be able to re-use common components from other algorithms, for example line searches, step computations, etc.

Classes of Problems in OPT++

Four major classes of problems available

- NLF0(ndim, fcn, init_fcn, constraint)
 - Basic nonlinear function, no derivative information available
- NLF1(ndim, fcn, init_fcn, constraint)
 - Nonlinear function, first derivative information available
- FDNLF1(ndim, fcn, init_fcn, constraint)
 - Nonlinear function, first derivative information approximated
- NLF2(ndim, fcn, init_fcn, constraint)
 - Nonlinear function, first and second derivative information available

Classes of Solvers in OPT++

- Direct search
 - No derivative information required
- Conjugate Gradient
 - Derivative information may be available but doesn't use quadratic information
- Newton-type methods
 - Algorithm attempts to use/approximate quadratic information
 - Newton
 - Finite-Difference Newton
 - Quasi-Newton
 - NIPS

Constraints

Constraint types

- BoundConstraint(numconstraints, lower, upper)
- LinearInequality(A, rhs, stdFlag)
- NonLinearInequality(nlprob, rhs, numconstraints, stdFlag)
- LinearEquation(A, rhs)
- NonLinearEquation(nlprob, rhs, numconstraints)

Everything combined

CompoundConstraint(constraints)

Quick tour of some of the algorithms

Pattern search

- Can handle noisy functions
- Do not require derivative information
- Inherently parallel
- Convergence can be painfully slow

Conjugate Gradient Methods

- Two major classes
- Standard nonlinear conjugate gradient
 - Two different types of line searches
- Limited Memory BFGS
 - Unconstrained version available
 - Bound constrained version under development

Newton-type Methods

- Fast convergence properties
- Good global convergence properties
- Inherently serial
- Difficulties with noisy functions

NIPS: Nonlinear Interior Point Solver

- Interior point method
- Based on Newton's method for a particular system of equations (perturbed Karush-Kuhn-Tucker, KKT, equations, slack variable form)
- Can handle general nonlinear constraints
- Can handle strict feasibility

$$F(\mu) = \begin{bmatrix} \nabla f(x) + \nabla h(x)y - \nabla g(x)w \\ w - z \\ h(x) \\ g(x) - s \\ ZSe - \mu e \end{bmatrix} = 0$$

Parallel Optimization

Schnabel Identified Three Levels for Introducing Parallelism Into Optimization (1995)

- Parallelize evaluation of function/gradient/constraints
 - May or may not be easy to implement
- Parallelize linear algebra
 - Really only useful if the optimization problem is large-scale
- Parallelize optimization algorithm at a high level, for example, multiple function evaluations in parallel
 - Parallel Direct Search
 - Generalized Pattern Search
 - TRPDS

Trust Region + PDS

- Fast convergence properties of Newton method
- Good global convergence properties of trust region approach
- Inherent parallelism of PDS
- Ability to handle noisy functions

Algorithm Choices Depend on Problem

	NLF0	FDNLF1	NLF1	NLF2
OptPDS	X	X	X	Х
OptCG		X	X	X
OptLBFGS		X	X	X
OptQNewton		X	X	X
OptBCQNewton		x	x	x
OptFDNewton		X	X	х
OptFDNIPS		X	X	X
OptNewton				X
OptBCNewton				X
OptNIPS				х

Example 1: unconstrained optimization

```
void init_rosen_x0(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);
int main() {
  int ndim = 2;
  FDNLF1 nlp(ndim, rosen, init_rosen_x0);
  nlp.initFcn();
  OptQNewton objfcn(&nlp);
  objfcn.setSearchStrategy(TrustRegion);
  objfcn.setMaxFeval(200);
  objfcn.setFcnTol(1.e-4);
  objfcn.optimize();
```


Example 2: Constrained optimization

min
$$(x_1 - x_2)^2 + (1/9)(x_1 + x_2 - 10)^2 + (x_3 - 5)^2$$

s.t.

$$x_1^2 + x_2^2 + x_3^2 \le 48,$$

$$-4.5 \le x_1 \le 4.5$$
,

$$-4.5 \le x_2 \le 4.5$$
,

$$-5.0 \le x_3 \le 5.0$$

Constrained optimization: Step 1

Defining the bound constraints:

$$-4.5 \le x_1 \le 4.5$$
,

$$-4.5 \le x_2 \le 4.5$$
,

$$-5.0 \le x_3 \le 5.0$$

int ndim = 3;

ColumnVector lower(ndim), upper(ndim);

lower << -4.5 << -4.5 << -5.0;

upper << 4.5 << 4.5 << 5.0;

Constraint bc = new BoundConstraint(ndim, lower, upper);

Constrained optimization: Step 2

Defining the nonlinear inequality constraint:

$$x_1^2 + x_2^2 + x_3^2 \le 48$$

NLP* chs65 = new NLP(new NLF2(ndim, 1, ineq, init_hs65_x0));

Constraint nleqn = new NonLinearInequality(chs65);

Collecting both constraints into one constraint object :

CompoundConstraint* constraints =

new CompoundConstraint(nleqn, bc);

Constrained optimization: Step 3

Defining and initializing the nonlinear problem:

```
NLF2 nips(ndim, hs65, init_hs65_x0, constraints);
nips.initFcn();
```

Defining the Optimization object and optimizing it!

```
OptNIPS optobj(&nips);
optobj.optimize();
```


Application: Protein Folding

```
void init_X0(int ndim, ColumnVector& x);
void eval_energy(int ndim, const ColumnVector& x, double& fx, int&
  result);
int main() {
  PDB pdb("t162.pdb"); // loads pdb file
  int ndim = 3 * pdb.NumAtoms();
  FDNLF1 nlp(ndim, eval_energy, init_X0);
  nlp.initFcn();
  OptLBFGS optobj(&nlp);
  optobj.setMaxFeval(10000);
  optobj.setFcnTol(1.e-6);
  optobj.optimize();
```


Energy Minimization Using LBFGS

- Energy Function: AMBER
- Protein 162;
- ❖ N = 13728 (4576 Atoms)
- ❖ LBFGS with M=15
- Total number of LBFGS iterations = 11656
- Total number of function evaluations = 11887
- Each function evaluation takes approximately 5
 CPU sec

Protein T162 (from CASP5)

- Initial configuration created using ProteinShop (S. Crivelli)
- Energy minimization computed using OPT++/LBFGS
- Final average RMSD change was 3.9
- Total simulation took approximately 32 hours on a 1.7GHz machine with 512 RAM

Summary

- OPT++ can handle many types of nonlinear optimization problems
- The toolkit can be used to compare the effectiveness of several algorithms on the same problem easily
- The user needs to provide only functions for the objective function and the constraints
 - If additional information is available it can be easily incorporated
- The code is open source and available at either
 - http://www.nersc.gov/~meza/projects/opt++
 - http://csmr.ca.sandia.gov/opt++

Backup Material

References

Other links

- http://sal.kachinatech.com/B/3/index.shtml
- http://www-neos.mcs.anl.gov/neos
- http://www.mcs.anl.gov/tao
- http://endo.sandia.gov/DAKOTA/index.html

Books/Papers

- Dennis and Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, 1983
- Gill, Murray, Wright, Practical Optimization, Academic Press, 1981
- El-Bakry, Tapia, Tsuchiya, Zhang, On the Formulation and Theory of the Newton Interior-Point Method for Nonlinear Programming, JOTA, Vol. 89, No.3, pp.507-541, 1996
- More´ and Wright, Optimization Software Guide, SIAM, 1993

Comparison of TRPDS with other approaches

Energy vs. LBFGS iterations for T162 Problem

T162 Protein: ||gradient|| by atom

Distribution of ||gradient|| by atom

